LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Carrier transport via V-shaped pits in InGaN/GaN MQW solar cells

Photo by rgaleriacom from unsplash

Carrier transport via the V-shaped pits (V-pits) in InGaN/GaN multiple-quantum-well (MQW) solar cells is numerically investigated. By simulations, it is found that the V-pits can act as effective escape paths… Click to show full abstract

Carrier transport via the V-shaped pits (V-pits) in InGaN/GaN multiple-quantum-well (MQW) solar cells is numerically investigated. By simulations, it is found that the V-pits can act as effective escape paths for the photo-generated carriers. Due to the thin barrier thickness and low indium composition of the MQW on V-pit sidewall, the carriers entered the sidewall QWs can easily escape and contribute to the photocurrent. This forms a parallel escape route for the carries generated in the flat quantum wells. As the barrier thickness of the flat MQW increases, more carriers would transport via the V-pits. Furthermore, it is found that the V-pits may reduce the recombination losses of carriers due to their screening effect to the dislocations. These discoveries are not only helpful for understanding the carrier transport mechanism in the InGaN/GaN MQW, but also important in design of the structure of solar cells.

Keywords: solar cells; transport via; ingan gan; carrier transport

Journal Title: Chinese Physics B
Year Published: 2017

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.