LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Approximate energies and thermal properties of a position-dependent mass charged particle under external magnetic fields

Photo from wikipedia

We solve the Schr\"odinger equation with a position-dependent mass (PDM) charged particle interacted via the superposition of the Morse and Coulomb potentials and exposed to external magnetic and Aharonov-Bohm (AB)… Click to show full abstract

We solve the Schr\"odinger equation with a position-dependent mass (PDM) charged particle interacted via the superposition of the Morse and Coulomb potentials and exposed to external magnetic and Aharonov-Bohm (AB) flux fields. The non-relativistic bound state energies together with their wave functions are calculated for two spatially-dependent mass distribution functions. We also study the thermal quantities of such a system. Further, the canonical formalism is used to compute various thermodynamic variables for second choosing mass by using the Gibbs formalism. We give plots for energy as a function of various physical parameters. The behavior of the internal energy, specific heat and entropy as functions of temperature and mass density parameter in the inverse-square mass case for different values of magnetic field are shown.

Keywords: external magnetic; mass; charged particle; dependent mass; position dependent

Journal Title: Chinese Physics B
Year Published: 2017

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.