By employing non-equilibrium Green's function combined with the spin-polarized density-functional theory, we investigate the spin-dependent electronic transport properties of armchair arsenene nanoribbons (aAsNRs). Our results show that the spin-metal and… Click to show full abstract
By employing non-equilibrium Green's function combined with the spin-polarized density-functional theory, we investigate the spin-dependent electronic transport properties of armchair arsenene nanoribbons (aAsNRs). Our results show that the spin-metal and spin-semiconductor properties can be observed in aAsNRs with different widths. We also find that there is nearly 100% bipolar spin-filtering behavior in the aAsNR-based device with antiparallel spin configuration. Moreover, rectifying behavior and giant magnetoresistance are found in the device. The corresponding physical analyses have been given.
               
Click one of the above tabs to view related content.