LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

A general method for large-scale fabrication of Cu nanoislands/dragonfly wing SERS flexible substrates*

Photo from academic.microsoft.com

Noble metal nanorough surfaces that support strong surface-enhanced Raman scattering (SERS) is widely applied in the practical detection of organic molecules. A low-cost, large-area, and environment-friendly SERS-active substrate was acquired… Click to show full abstract

Noble metal nanorough surfaces that support strong surface-enhanced Raman scattering (SERS) is widely applied in the practical detection of organic molecules. A low-cost, large-area, and environment-friendly SERS-active substrate was acquired by sputtering inexpensive copper (Cu) on natural dragonfly wing (DW) with an easily controlled way of magnetron sputtering. By controlling the sputtering time of the fabrication of Cu on the DW, the performance of the SERS substrates was greatly improved. The SERS-active substrates, obtained at the optimal sputtering time (50 min), showed a low detection limit (10−6M) to 4-aminothiophenol (4-ATP), a high average enhancement factor (EF, , excellent signal uniformity, and good reproducibility. In addition, the results of the 3D finite-difference time-domain (3D-FDTD) simulation illustrated that the SERS-active substrates provided high-density "hot spots", leading to a large SERS enhancement.

Keywords: general method; large scale; fabrication; sers active; method large; dragonfly wing

Journal Title: Chinese Physics B
Year Published: 2018

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.