We investigate the dynamical behaviors of quantum-memory-assisted entropic uncertainty and its lower bound in the amplitude-damping channel. The influences of different placement positions of the quantum register on the dynamics… Click to show full abstract
We investigate the dynamical behaviors of quantum-memory-assisted entropic uncertainty and its lower bound in the amplitude-damping channel. The influences of different placement positions of the quantum register on the dynamics of quantum coherence, quantum entanglement, and quantum discord are analyzed in detail. The numerical simulation results show that the quantum register should be placed in the channel of the non-Markovian effect. This option is beneficial to reduce the entropic uncertainty and its lower bound. We also find that this choice does not change the evolution of the quantum coherence and quantum entanglement, but changes the dynamical process of the quantum discord of the system. These results show that quantum coherence, quantum entanglement, and quantum discord are different quantum resources with unique characteristics and properties, and quantum discord can play a key role in reducing the uncertainty of quantum systems.
               
Click one of the above tabs to view related content.