We investigate full counting statistics of quantum heat transfer in a collective-qubit system, constructed by multi-qubits interacting with two thermal baths. The nonequilibrium polaron-transformed Redfield approach embedded with an auxiliary… Click to show full abstract
We investigate full counting statistics of quantum heat transfer in a collective-qubit system, constructed by multi-qubits interacting with two thermal baths. The nonequilibrium polaron-transformed Redfield approach embedded with an auxiliary counting field is applied to obtain the steady state heat current and fluctuations, which enables us to study the impact of the qubit-bath interaction in a wide regime. The heat current, current noise and skewness are all found to clearly unify the limiting results in the weak and strong couplings, respectively. Moreover, the superradiant heat transfer is clarified as a system-size-dependent effect, and large number of qubits dramatically suppresses the nonequilibrium superradiant signature.
               
Click one of the above tabs to view related content.