LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Polarized photoluminescence spectroscopy in WS2, WSe2 atomic layers and heterostructures by cylindrical vector beams

Photo from wikipedia

Due to the large exciton binding energy, two-dimensional (2D) transition metal dichalcogenides (TMDCs) provide an ideal platform for studying excitonic states and related photonics and optoelectronics. Polarization states lead to… Click to show full abstract

Due to the large exciton binding energy, two-dimensional (2D) transition metal dichalcogenides (TMDCs) provide an ideal platform for studying excitonic states and related photonics and optoelectronics. Polarization states lead to distinct light-matter interactions which are of great importance for device applications. In this work, we study polarized photoluminescence spectra from intralayer exciton and indirect exciton in WS2 and WSe2 atomic layers, and interlayer exciton in WS2/WSe2 heterostructures by radially and azimuthally polarized cylindrical vector laser beams. We demonstrated the same in-plane and out-of-plane polarization behavior from the intralayer and indirect exciton. Moreover, with these two laser modes, we obtained interlayer exciton in WS2/WSe2 heterostructures with stronger out-of-plane polarization, due to the formation of vertical electric dipole moment.

Keywords: exciton; ws2 wse2; wse2 atomic; spectroscopy; polarized photoluminescence

Journal Title: Chinese Physics B
Year Published: 2021

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.