LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Taking snapshots of a moving electron wave packet in molecules using photoelectron holography in strong-field tunneling ionization

Photo from wikipedia

Coherent superposition of electronic states induces attosecond electron motion in molecules. We theoretically investigate the strong-field ionization of this superposition state by numerically solving the time-dependent Schrödinger equation. In the… Click to show full abstract

Coherent superposition of electronic states induces attosecond electron motion in molecules. We theoretically investigate the strong-field ionization of this superposition state by numerically solving the time-dependent Schrödinger equation. In the obtained photoelectron momentum distribution, an intriguing bifurcation structure appears in the strong-field holographic interference pattern. We demonstrate that this bifurcation structure directly provides complete information about the status of the transient wave function of the superposition state: the horizontal location of the bifurcation in the momentum distribution reveals the relative phase of the involved components of the superposition state and the vertical position indicates the relative coefficient. Thus, this bifurcation structure takes a snapshot of the transient electron wave packet of the superposition state and provides an intuitive way to monitor electron motion in molecules.

Keywords: superposition; wave packet; strong field; superposition state; electron wave

Journal Title: Chinese Physics B
Year Published: 2021

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.