A series of Sr2MgSi2O7:Tb3+ nanophosphors is prepared using a high-temperature solid-state reaction. The x-ray diffraction patterns show that the crystal structure of the sample is not significantly affected by Tb3+… Click to show full abstract
A series of Sr2MgSi2O7:Tb3+ nanophosphors is prepared using a high-temperature solid-state reaction. The x-ray diffraction patterns show that the crystal structure of the sample is not significantly affected by Tb3+ ions. However, the images of the scanning electron microscope illustrate that the average size of nanoparticles becomes larger with the increase of Tb3+ concentration. Unlike earlier investigations on down-conversion emission of Tb3+ ion excited by deep ultraviolet light, in this work, the photoluminescence characteristics of Sr2MgSi2O7 nanophosphors doped with different Tb3+ concentrations are analyzed under 374-nm excitations. The intense green emission at 545 nm is observed at an optimal doping concentration of 1.6 mol%. The main reason for the concentration quenching is due to the electric dipole–electric dipole interaction among Tb3+ ions.
               
Click one of the above tabs to view related content.