LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Effects of classical random external field on the dynamics of entanglement in a four-qubit system

Photo by glenncarstenspeters from unsplash

We investigate the dynamics of entanglement through negativity and witness operators in a system of four non-interacting qubits driven by a classical phase noisy laser characterized by a classical random… Click to show full abstract

We investigate the dynamics of entanglement through negativity and witness operators in a system of four non-interacting qubits driven by a classical phase noisy laser characterized by a classical random external field (CREF). The qubits are initially prepared in the GHZ-type and W-type states and interact with the CREF in two different qubit-field configurations, namely, common environment and independent environments in which the cases of equal and different field phase probabilities are distinguished. We find that entanglement exhibits different decaying behavior, depending on the input states of the qubits, the qubit-field coupling configuration, and field phase probabilities. On the one hand, we demonstrate that the coupling of the qubits in a common environment is an alternative and more efficient strategy to completely shield the system from the detrimental impacts of the decoherence process induced by a CREF, independent of the input state and the field phase probabilities considered. Also, we show that GHZ-type states have strong dynamics under CREF as compared to W-type states. On the other hand, we demonstrate that in the model investigated the system robustness’s can be greatly improved by increasing the number of qubits constituting the system.

Keywords: system; external field; field; classical random; random external; dynamics entanglement

Journal Title: Chinese Physics B
Year Published: 2021

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.