LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

High-resolution angle-resolved photoemission study of large magnetoresistance topological semimetal CaAl4

Photo by martindorsch from unsplash

Extremely large magnetoresistance (XMR) has been explored in many nonmagnetic topologically nontrivial/trivial semimetals, while it is experimentally ambiguous which mechanism should be responsible in a specific material due to the… Click to show full abstract

Extremely large magnetoresistance (XMR) has been explored in many nonmagnetic topologically nontrivial/trivial semimetals, while it is experimentally ambiguous which mechanism should be responsible in a specific material due to the complex electronic structures. In this paper, the magnetoresistance origin of single crystal CaAl4 with C2/m structure at low temperature is investigated, exhibiting unsaturated magnetoresistance of ∼ 3000% at 2.5 K and 14 T as the fingerprints of XMR materials. By the combination of ARPES and the first-principles calculations, we elaborate multiband features and anisotropic Fermi surfaces, which can explain the mismatch of isotropic two-band model. Although the structural phase transition from I4/mmm to C2/m has been recognized, the subtle impact on electronic structure is revealed by our ARPES measurements. Considering that both charge compensation and potential topologically nontrivial band structure exist in CaAl4, our findings report CaAl4 as a new reference material for exploring the XMR phenomena.

Keywords: high resolution; caal4; large magnetoresistance; magnetoresistance; angle resolved; resolution angle

Journal Title: Chinese Physics B
Year Published: 2021

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.