We mainly investigate the variable-coefficient 3-coupled nonlinear Schrödinger (NLS) system, which describes soliton dynamics in the three-spine α-helical protein with inhomogeneous effect. The variable-coefficient NLS equation is transformed into the… Click to show full abstract
We mainly investigate the variable-coefficient 3-coupled nonlinear Schrödinger (NLS) system, which describes soliton dynamics in the three-spine α-helical protein with inhomogeneous effect. The variable-coefficient NLS equation is transformed into the constant coefficient NLS equation by similarity transformation firstly. The Hirota method is used to solve the constant coefficient NLS equation, and then we get the one- and two-breather solutions of the variable-coefficient NLS equation. The results show that, in the background of plane waves and periodic waves, the breather can be transformed into some forms of combined soliton solutions. The influence of different parameters on the soliton solution and the collision between two solitons are discussed by some graphs in detail. Our results are helpful to study the soliton dynamics in α-helical protein.
               
Click one of the above tabs to view related content.