Integrated cavity output spectroscopy (ICOS) is an effective technique in trace gase detection. The strong absorption due to the long optical path of this method makes it challenging in the… Click to show full abstract
Integrated cavity output spectroscopy (ICOS) is an effective technique in trace gase detection. The strong absorption due to the long optical path of this method makes it challenging in the application scenes that have large gas concentration fluctuation, especially when the gas concentration is high. In this paper, we demonstrate an extension of the dynamic range of ICOS by using a detuned laser combined with an off-axis integrating cavity. With this, we improve the upper limit of the dynamic detection range from 0.1% (1000 ppm) to 20% of the gas concentration. This method provides a way of using ICOS in the applications with unpredictable gas concentrations such as gas leak detection, ocean acidification, carbon sequestration, etc.
               
Click one of the above tabs to view related content.