Eigenspectra that fill regions in the complex plane have been intriguing to many, inspiring research from random matrix theory to esoteric semi-infinite bounded non-Hermitian lattices. In this work, we propose… Click to show full abstract
Eigenspectra that fill regions in the complex plane have been intriguing to many, inspiring research from random matrix theory to esoteric semi-infinite bounded non-Hermitian lattices. In this work, we propose a simple and robust ansatz for constructing models whose eigenspectra fill up generic prescribed regions. Our approach utilizes specially designed non-Hermitian random couplings that allow the co-existence of eigenstates with a continuum of localization lengths, mathematically emulating the effects of semi-infinite boundaries. While some of these couplings are necessarily long-ranged, they are still far more local than what is possible with known random matrix ensembles. Our ansatz can be feasibly implemented in physical platforms such as classical and quantum circuits, and harbors very high tolerance to imperfections due to its stochastic nature.
               
Click one of the above tabs to view related content.