The competition between different magnetic structures in the hole doped Fe-pnicitides is explored based on an extended five-orbital Hubbard model including long-range Coulomb interactions. Our results show that the stabilized… Click to show full abstract
The competition between different magnetic structures in the hole doped Fe-pnicitides is explored based on an extended five-orbital Hubbard model including long-range Coulomb interactions. Our results show that the stabilized magnetic structure evolves with increasing hole doping level. Namely, the stripe antiferromagnetic phase dominates at zero doping, while magnetic structures with more antiferromagnetic linking number such as the staggered tetramer, staggered trimer, and staggered dimer phases become energetically favorable as the hole density increases. At a certain doping level, energy degeneracy of different magnetic structures appears, indicating strong magnetic frustration and magnetic fluctuations in the system. We suggest that the magnetic competition induced by the hole doping may explain the fast decease of the Neel temperature TN and the moderately suppressed magnetic moment in the hole doped Fe-pnicitides. Moreover, our results show a sign reversal of the kinetic energy anisotropy as the magnetic ground state evolves, which may be the mechanism behind the puzzling sign reversal of the in-plane resistivity anisotropy in hole-doped Fe-pnicitides.
               
Click one of the above tabs to view related content.