Owing to the unique electronic structure, kagome materials AV3Sb5 (A=K, Rb, Cs) provide a fertile platform of quantum phenomena such as the strongly correlated state and topological Dirac band. It… Click to show full abstract
Owing to the unique electronic structure, kagome materials AV3Sb5 (A=K, Rb, Cs) provide a fertile platform of quantum phenomena such as the strongly correlated state and topological Dirac band. It is well known that RbV3Sb5 exhibits a 2×2 unconventional charge density wave (CDW) state at low temperature, and the mechanism is controversial. Here, by using scanning tunneling microscopy/spectroscopy (STM/STS), we successfully manipulated the CDW state in the Sb plane of RbV3Sb5, and realized a new √ 3×√ 3 modulation together with the ubiquitous 2×2 period in the CDW state of RbV3Sb5. The work provides a new understanding of the collective quantum ground states in the kagome materials.
               
Click one of the above tabs to view related content.