The skyrmion stability at finite isospin chemical potential \begin{document}$\mu_I$\end{document} is studied using the Skyrme Lagrangian with a finite pion mass \begin{document}$m_{\pi}$\end{document} . A critical value \begin{document}$\mu_{I{\rm c}}=\sqrt{3/2}m_{\pi}$\end{document} , above which… Click to show full abstract
The skyrmion stability at finite isospin chemical potential \begin{document}$\mu_I$\end{document} is studied using the Skyrme Lagrangian with a finite pion mass \begin{document}$m_{\pi}$\end{document} . A critical value \begin{document}$\mu_{I{\rm c}}=\sqrt{3/2}m_{\pi}$\end{document} , above which a stable soliton does not exist, is found. We also explore some properties of the skyrmion as function of \begin{document}$\mu_{I}$\end{document} , i.e., the isoscalar rms radius and the isoscalar magnetic rms radius. Finally, considering the finite temperature effect on the skyrmion mass, we obtain a critical temperature \begin{document}$T_{\rm c}$\end{document} , using the profile function of the skyrmion, above which the skyrmion mass does not have a minimum, which can be interpreted as the occurrence of the deconfinement phase transition.
               
Click one of the above tabs to view related content.