LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

The isotropic energy function and formation rate of short gamma-ray bursts

Gamma-ray bursts (GRBs) are brief, intense, gamma-ray flashes in the universe, lasting from a few milliseconds to a few thousand seconds. For short gamma-ray bursts (sGRBs) with duration less than… Click to show full abstract

Gamma-ray bursts (GRBs) are brief, intense, gamma-ray flashes in the universe, lasting from a few milliseconds to a few thousand seconds. For short gamma-ray bursts (sGRBs) with duration less than 2 seconds, the isotropic energy (E iso) function may be more scientifically meaningful and accurately measured than the luminosity (L p) function. In this work we construct, for the first time, the isotropic energy function of sGRBs and estimate their formation rate. First, we derive the L p – E p correlation using 22 sGRBs with known redshifts and well-measured spectra and estimate the pseduo redshifts of 334 Fermi sGRBs. Then, we adopt the Lynden-Bell c − method to study isotropic energy functions and formation rate of sGRBs without any assumption. A strong evolution of isotropic energy E iso ∝ (1+z)5.79 is found, which is comparable to that between L p and z. After removing effect of the cosmic evolution, the isotropic energy function can be reasonably fitted by a broken power law, which is ϕ(Eiso,0)∝Eiso,0−0.45 for dim sGRBs and ϕ(Eiso,0)∝Eiso,0−1.11 for bright sGRBs, with the break energy 4.92 × 1049 erg. We obtain the local formation rate of sGRBs is about 17.43 events Gpc−3 yr−1. If assuming a beaming angle is 6° to 26°, the local formation rate including off-axis sGRBs is estimated as ρ 0,all = 155.79 – 3202.35 events Gpc−3 yr−1.

Keywords: energy; function; isotropic energy; formation rate

Journal Title: Research in Astronomy and Astrophysics
Year Published: 2021

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.