LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Modeling the fast optical transient SN 2019bkc/ATLAS19dqr with a central engine and implication for its origin

Photo from academic.microsoft.com

Modern wide-field high-cadence surveys have revealed the significant diversity of optical transient phenomena in their luminosity and timescale distributions, which led to the discovery of some mysterious fast optical transients… Click to show full abstract

Modern wide-field high-cadence surveys have revealed the significant diversity of optical transient phenomena in their luminosity and timescale distributions, which led to the discovery of some mysterious fast optical transients (FOTs). These FOTs can usually rise and decline remarkably in a timescale of a few days to weeks, which are obviously much rapider than ordinary supernovae. SN 2019bkc/ATLAS19dqr is one of the fastest detected FOTs so far and, meanwhile, it was found to be un-associated with a host galaxy. These discoveries provide a good chance to explore the possible origins of FOTs. So, we model the light curves of SN 2019bkc in details. It is found that SN 2019bkc can be well explained by the thermal emission of an explosion ejecta that is powered by a long-lasting central engine. The engine could be a spinning-down millisecond magnetar or a fallback accretion onto a compact object. Combining the engine property, the mass of the ejecta, and the hostlessness of SN 2019bkc, we suggest that this FOT is likely to originate from a merger of a white dwarf and a neutron star.

Keywords: optical transient; 2019bkc atlas19dqr; engine; fast optical; central engine

Journal Title: Research in Astronomy and Astrophysics
Year Published: 2021

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.