Light-emitting diodes based on lead halide perovskite have attracted great attention due to their outstanding performance. However, their application is plagued by the toxicity of Pb and the poor stability.… Click to show full abstract
Light-emitting diodes based on lead halide perovskite have attracted great attention due to their outstanding performance. However, their application is plagued by the toxicity of Pb and the poor stability. Herein novel copper-based all inorganic perovskite CsCu2I3 with much enhanced stability has been reported with a potential photoluminescence quantum yield (PLQY) over 20% and self-trapped excitons (STE). By taking advantage of its extraordinary thermal stability, we successfully fabricate high-quality CsCu2I3 film through direct vacuum-based deposition (VBD) of CsCu2I3 powder. The resulting film shows almost the same PLQY with the synthesized powder, as well as excellent uniformity and stability. The perovskite light-emitting diodes (Pe-LED) based on the evaporated CsCu2I3 emitting layer achieve a luminescence of 10 cd/m2 and an external quantum efficiency (EQE) of 0.02%. To the best of our knowledge, this is the first CsCu2I3 Pe-LED fabricated by VBD with STE property, which offers a new avenue for lead-free Pe-LED.
               
Click one of the above tabs to view related content.