LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Enhancement of photoelectrochemical performance in ferroelectric films via the introduction of an Au buffer layer

Photo from wikipedia

The inefficient separation of photogenerated carriers has become a serious problem that limits the photoelectrochemical (PEC) performance of semiconductors. Herein, a sol-gel method was used to prepare BiFeO3 ferroelectric thin… Click to show full abstract

The inefficient separation of photogenerated carriers has become a serious problem that limits the photoelectrochemical (PEC) performance of semiconductors. Herein, a sol-gel method was used to prepare BiFeO3 ferroelectric thin films with FTO and FTO/Au as substrates, respectively. The polarization electric field of the ferroelectric can more effectively separate the carriers generated in the photoelectrode. Meanwhile, the introduction of an Au buffer layer can reduce the resistance in the process of charge transfer, accelerate the carrier migration, and enhance the efficiency of the charge separation. Under light irradiation, Au/BiFeO3 photoelectrode exhibited an extraordinary improvement in PEC water splitting compared with BiFeO3. In addition, the ferroelectric polarization electric field causes band bending, which further accelerates the separation of electrons and holes and improves the PEC performance of the photoelectrode. This work promotes the effective application of ferroelectric films in PEC water splitting.

Keywords: buffer layer; introduction buffer; ferroelectric films; performance

Journal Title: Journal of Semiconductors
Year Published: 2021

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.