LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Neurophysiological correlates of force control improvement induced by sinusoidal vibrotactile stimulation.

Photo by charlesdeluvio from unsplash

OBJECTIVE An optimal level of vibrotactile stimulation has been shown to improve sensorimotor control in healthy and diseased individuals. However, the underlying neurophysiological mechanisms behind the enhanced motor performance caused… Click to show full abstract

OBJECTIVE An optimal level of vibrotactile stimulation has been shown to improve sensorimotor control in healthy and diseased individuals. However, the underlying neurophysiological mechanisms behind the enhanced motor performance caused by vibrotactile stimulation are yet to be fully understood. Therefore, here we aim to evaluate the effect of a cutaneous vibration on the firing behavior of motor units in a condition of improved force steadiness. APPROACH Participants performed a visuomotor task, which consisted of low-intensity isometric contractions of the first dorsal interosseous (FDI) muscle, while sinusoidal (175Hz) vibrotactile stimuli with different intensities were applied to the index finger. High-density surface electromyogram was recorded from the FDI muscle, and a decomposition algorithm was used to extract the motor unit spike trains. Additionally, computer simulations were performed using a multiscale neuromuscular model to provide a potential explanation for the experimental findings. MAIN RESULTS Experimental outcomes showed that an optimal level of vibration significantly improved force steadiness (estimated as the coefficient of variation of force). The decreased force variability was accompanied by a reduction in the variability of the smoothed cumulative spike train (as an estimation of the neural drive to the muscle), and the proportion of common inputs to the FDI motor nucleus. However, the interspike interval variability did not change significantly with the vibration. A mathematical approach, together with computer simulation results suggested that vibrotactile stimulation would reduce the variance of the common synaptic input to the motor neuron pool, thereby decreasing the low frequency fluctuations of the neural drive to the muscle and force steadiness. SIGNIFICANCE Our results demonstrate that the decreased variability in common input accounts for the enhancement in force control induced by vibrotactile stimulation.

Keywords: force control; stimulation; vibrotactile stimulation; motor

Journal Title: Journal of neural engineering
Year Published: 2019

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.