LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Grasp force estimation from the transient EMG using high-density surface recordings.

Photo from wikipedia

OBJECTIVE Understanding the neurophysiological signals underlying voluntary motor control and decoding them for prosthesis control are among the major challenges in applied neuroscience and bioengineering. Usually, information from the electrical… Click to show full abstract

OBJECTIVE Understanding the neurophysiological signals underlying voluntary motor control and decoding them for prosthesis control are among the major challenges in applied neuroscience and bioengineering. Usually, information from the electrical activity of residual forearm muscles (i.e. the electromyogram, EMG) is used to control different functions of a prosthesis. Noteworthy, forearm EMG patterns at the onset of a contraction (transient phase) have shown to contain predictive information about upcoming grasps. However, decoding this information for the estimation of grasp force was so far overlooked. APPROACH High Density-EMG signals (192 channels) were recorded from twelve participants performing a pick-and-lift task. The final grasp force was estimated offline using linear regressors, with four subsets of channels and ten features obtained using three channels-features selection methods. Two different evaluation metrics (absolute error and R2), complemented with statistical analysis, were used to select the optimal configuration of the parameters. Different windows of data starting at the grasp force (GF) onset were compared to determine the time at which the grasp force can be ascertained from the EMG signals. MAIN RESULTS The prediction accuracy improved by increasing the window length from the moment of the onset and kept improving until the steady state at which a plateau of performances was reached. With our methodology, estimations of the grasp force through 16 EMG channels reached an absolute error of 2.52% the maximum voluntary force using only transient information and 1.99% with the first 500ms of data following the onset. SIGNIFICANCE The final GF estimation from transient EMG was comparable to the one obtained using steady state data, confirming our hypothesis that the transient phase contains information about the final grasp force. This result paves the way to fast online myoelectric controllers capable of decoding grasp strength from the very early portion of the EMG signal.

Keywords: grasp force; information; estimation; emg; force; transient

Journal Title: Journal of neural engineering
Year Published: 2020

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.