OBJECTIVE To design a computationally efficient model for ultrasonic neuromodulation (UNMOD) of morphologically realistic multi-compartmental neurons based on intramembrane cavitation. APPROACH A Spatially Extended Neuronal Intramembrane Cavitation model that accurately… Click to show full abstract
OBJECTIVE To design a computationally efficient model for ultrasonic neuromodulation (UNMOD) of morphologically realistic multi-compartmental neurons based on intramembrane cavitation. APPROACH A Spatially Extended Neuronal Intramembrane Cavitation model that accurately predicts observed fast Charge Oscillations (SECONIC) is designed. A regular spiking cortical Hodgkin-Huxley type nanoscale neuron model of the bilayer sonophore and surrounding proteins is used. The accuracy and computational efficiency of SECONIC is compared with the Neuronal Intramembrane Cavitation Excitation (NICE) and multiScale Optimized model of Neuronal Intramembrane Cavitation (SONIC). MAIN RESULTS Membrane charge redistribution between different compartments should be taken into account via fourier series analysis in an accurate multi-compartmental UNMOD-model. Approximating charge and voltage traces with the harmonic term and first two overtones results in reasonable goodness-of-fit, except for high ultrasonic pressure (adjusted R-squared ≥0.61). Taking into account the first eight overtones results in a very good fourier series fit (adjusted R-squared ≥0.96) up to 600 kPa. Next, the dependency of effective voltage and rate parameters on charge oscillations is investigated. The two-tone SECONIC-model is one to two orders of magnitude faster than the NICE-model and demonstrates accurate results for ultrasonic pressure up to 100 kPa. SIGNIFICANCE Up to now, the underlying mechanism of UNMOD is not well understood. Here, the extension of the bilayer sonophore model to spatially extended neurons via the design of a multi-compartmental UNMOD-model, will result in more detailed predictions that can be used to validate or falsify this tentative mechanism. Furthermore, a multi-compartmental model for UNMOD is required for neural engineering studies that couple finite difference time domain simulations with neuronal models. Here, we propose the SECONIC-model, extending the SONIC-model by taking into account charge redistribution between compartments.
               
Click one of the above tabs to view related content.