LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Speech decoding from a small set of spatially segregated minimally invasive intracranial EEG electrodes with a compact and interpretable neural network

Photo from wikipedia

Objective. Speech decoding, one of the most intriguing brain-computer interface applications, opens up plentiful opportunities from rehabilitation of patients to direct and seamless communication between human species. Typical solutions rely… Click to show full abstract

Objective. Speech decoding, one of the most intriguing brain-computer interface applications, opens up plentiful opportunities from rehabilitation of patients to direct and seamless communication between human species. Typical solutions rely on invasive recordings with a large number of distributed electrodes implanted through craniotomy. Here we explored the possibility of creating speech prosthesis in a minimally invasive setting with a small number of spatially segregated intracranial electrodes. Approach. We collected one hour of data (from two sessions) in two patients implanted with invasive electrodes. We then used only the contacts that pertained to a single stereotactic electroencephalographic (sEEG) shaft or an electrocorticographic (ECoG) stripe to decode neural activity into 26 words and one silence class. We employed a compact convolutional network-based architecture whose spatial and temporal filter weights allow for a physiologically plausible interpretation. Main results. We achieved on average 55% accuracy using only six channels of data recorded with a single minimally invasive sEEG electrode in the first patient and 70% accuracy using only eight channels of data recorded for a single ECoG strip in the second patient in classifying 26+1 overtly pronounced words. Our compact architecture did not require the use of pre-engineered features, learned fast and resulted in a stable, interpretable and physiologically meaningful decision rule successfully operating over a contiguous dataset collected during a different time interval than that used for training. Spatial characteristics of the pivotal neuronal populations corroborate with active and passive speech mapping results and exhibit the inverse space-frequency relationship characteristic of neural activity. Compared to other architectures our compact solution performed on par or better than those recently featured in neural speech decoding literature. Significance. We showcase the possibility of building a speech prosthesis with a small number of electrodes and based on a compact feature engineering free decoder derived from a small amount of training data.

Keywords: network; spatially segregated; speech decoding; speech; decoding small; minimally invasive

Journal Title: Journal of Neural Engineering
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.