LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Asynchronous axonal firing patterns evoked via continuous subthreshold kilohertz stimulation

Photo from wikipedia

Objective. Transcutaneous electrical stimulation of peripheral nerves is a common technique to assist or rehabilitate impaired muscle activation. However, conventional stimulation paradigms activate nerve fibers synchronously with action potentials time-locked… Click to show full abstract

Objective. Transcutaneous electrical stimulation of peripheral nerves is a common technique to assist or rehabilitate impaired muscle activation. However, conventional stimulation paradigms activate nerve fibers synchronously with action potentials time-locked with stimulation pulses. Such synchronous activation limits fine control of muscle force due to synchronized force twitches. Accordingly, we developed a subthreshold high-frequency stimulation waveform with the goal of activating axons asynchronously. Approach. We evaluated our waveform experimentally and through model simulations. During the experiment, we delivered continuous subthreshold pulses at frequencies of 16.67, 12.5, or 10 kHz transcutaneously to the median and ulnar nerves. We obtained high-density electromyographic (EMG) signals and fingertip forces to quantify the axonal activation patterns. We used a conventional 30 Hz stimulation waveform and the associated voluntary muscle activation for comparison. We modeled stimulation of biophysically realistic myelinated mammalian axons using a simplified volume conductor model to solve for extracellular electric potentials. We compared the firing properties under kHz and conventional 30 Hz stimulation. Main results. EMG activity evoked by kHz stimulation showed high entropy values similar to voluntary EMG activity, indicating asynchronous axon firing activity. In contrast, we observed low entropy values in EMG evoked by conventional 30 Hz stimulation. The muscle forces evoked by kHz stimulation also showed more stable force profiles across repeated trials compared with 30 Hz stimulation. Our simulation results provide direct evidence of asynchronous firing patterns across a population of axons in response to kHz frequency stimulation, while 30 Hz stimulation elicited synchronized time-locked responses across the population. Significance. We demonstrate that the continuous subthreshold high-frequency stimulation waveform can elicit asynchronous axon firing patterns, which can lead to finer control of muscle forces.

Keywords: continuous subthreshold; firing patterns; muscle; conventional stimulation; stimulation; activation

Journal Title: Journal of Neural Engineering
Year Published: 2023

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.