LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Modification of argon impurity transport by electron cyclotron heating in KSTAR H-mode plasmas

Photo from wikipedia

Experiments with a small amount of Ar gas injection as a trace impurity were conducted in the Korea Superconducting Tokamak Advanced Research (KSTAR) H-mode plasma (BT  = 2.8 T, IP =… Click to show full abstract

Experiments with a small amount of Ar gas injection as a trace impurity were conducted in the Korea Superconducting Tokamak Advanced Research (KSTAR) H-mode plasma (BT  = 2.8 T, IP = 0.6 MA, and PNBI = 4.0 MW). 170 GHz electron cyclotron resonance heating (ECH) at 600 and 800 kW was focused along the mid-plane with a fixed major radial position of R  =  1.66 m. The emissivity of the Ar16+ (3.949 A) and Ar15+ (353.860 A) spectral lines were measured by x-ray imaging crystal spectroscopy (XICS) and a vacuum UV (VUV) spectrometer, respectively. ECH reduces the peak Ar15+ emission and increases the Ar16+ emission, an effect largest with 800 kW. The ADAS-SANCO impurity transport code was used to evaluate the Ar transport coefficients. It was found that the inward convective velocity found in the plasma core without ECH was decreased with ECH, while diffusion remained approximately constant resulting in a less-peaked Ar density profile. Theoretical results from the NEO code suggest that neoclassical transport is not responsible for the change in transport, while the microstability analysis using GKW predicts a dominant ITG mode during both ECH and non-ECH plasmas.

Keywords: electron cyclotron; impurity transport; transport; kstar mode; impurity

Journal Title: Nuclear Fusion
Year Published: 2017

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.