LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Increasing the density in Wendelstein 7-X: benefits and limitations

Photo from wikipedia

In stellarators, increasing the density is beneficial for the energy confinement. While there is no single reason for this observation, it is still very robust across different devices and this… Click to show full abstract

In stellarators, increasing the density is beneficial for the energy confinement. While there is no single reason for this observation, it is still very robust across different devices and this is reflected in the empirical energy confinement time scaling for stellarators, ISS04. In order to study whether this is also true for Wendelstein 7-X, the density scaling of the energy confinement time is analyzed and compared to ISS04 for the first divertor experiments. When the density is increased beyond a critical density, however, radiative collapses are frequently observed. Existing analytical models for the critical density are revisited to assess whether they can predict the accessible density range. Furthermore, since close to the collapse the radiation losses increase substantially, the impact on the global energy confinement is investigated. It is found that in plasmas with high radiation the density scaling of the energy confinement time becomes weaker, the reason for this observation is not yet clear. In the second half of the first divertor campaign, boronization was applied to W7-X for the first time. This broadened the operational window, allowing for operation at higher density and, hence, higher stored energy.

Keywords: energy; time; density; energy confinement; increasing density

Journal Title: Nuclear Fusion
Year Published: 2020

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.