LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Recent progress in shattered pellet injection technology in support of the ITER disruption mitigation system

Photo from wikipedia

Shattered pellet injection (SPI) has been selected as the baseline technology for the disruption mitigation (DM) system for ITER. Typical SPI utilizes cryogenic cooling to desublimate low pressure ( Click to show full abstract

Shattered pellet injection (SPI) has been selected as the baseline technology for the disruption mitigation (DM) system for ITER. Typical SPI utilizes cryogenic cooling to desublimate low pressure (<100 mbar) gases onto a cold zone within a pipe gun barrel, forming a cylindrical pellet. Pellets are dislodged from the barrel and accelerated using either a gas driven mechanical punch or high-pressure light-gas delivered by a fast-opening valve. SPI technology developed at Oak Ridge National Laboratory is currently deployed and operational on DIII-D, JET, and KSTAR. These SPI systems are used in experiments for physics scaling to ITER thermal mitigation and runaway electron dissipation/avoidance. The pellet sizes used for these machines are in the range of 4 to 12.5 mm in diameter with length to diameter ratios (L/D) of ∼1.5. The current plan for ITER SPI is to utilize pellets that are 28.5 mm in diameter with an L/D of ∼2. The large pellet sizes, high steady-state magnetic fields, and limitations of operating in a radiation environment render much of the current technology unusable. In addition to technology improvements, a deeper understanding of pellet material properties, formation, and release is being developed for implementation in future SPI designs, specifically ITER.

Keywords: shattered pellet; iter; technology; mitigation; spi; pellet

Journal Title: Nuclear Fusion
Year Published: 2021

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.