LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Supersymmetric t-J models with long-range interactions: thermodynamics and criticality

Photo by aiony from unsplash

We analyze the thermodynamics and the critical behavior of the supersymmetric su($m$) $t$-$J$ model with long-range interactions. Using the transfer matrix formalism, we obtain a closed-form expression for the free… Click to show full abstract

We analyze the thermodynamics and the critical behavior of the supersymmetric su($m$) $t$-$J$ model with long-range interactions. Using the transfer matrix formalism, we obtain a closed-form expression for the free energy per site both for a finite number of sites and in the thermodynamic limit. Our approach, which is different from the usual ones based on the asymptotic Bethe ansatz and generalized exclusion statistics, can in fact be applied to a large class of models whose spectrum is described in terms of supersymmetric Young tableaux and their associated Haldane motifs. In the simplest and most interesting su(2) case, we identify the five ground state phases of the model and derive the complete low-temperature asymptotic series of the free energy per site, the magnetization and charge densities, and their susceptibilities. We verify the model's characteristic spin-charge separation at low temperatures, and show that it holds to all orders in the asymptotic expansion. Using the low-temperature asymptotic expansions of the free energy, we also analyze the critical behavior of the model in each of its ground state phases. While the standard su(1|2) phase is described by two independent CFTs with central charge $c=1$ in correspondence with the spin and charge sectors, we find that the low-energy behavior of the su(2) and su(1|1) phases is that of a single $c=1$ CFT. We show that the model exhibits an even richer behavior on the boundary between zero-temperature phases, where it can be non-critical but gapless, critical in the spin sector but not in the charge one, or critical with central charge $c=3/2$.

Keywords: long range; model; range interactions; charge; thermodynamics

Journal Title: Journal of Statistical Mechanics: Theory and Experiment
Year Published: 2019

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.