LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Pulse solutions of the fractional effective models of the Fermi–Pasta–Ulam lattice with long-range interactions

Photo by scottwebb from unsplash

We study analytical solutions of the Fractional Boussinesq Equation (FBE), which is an effective model for the Fermi-Pasta-Ulam (FPU) one-dimensional lattice with long-range couplings. The couplings decay as a power-law… Click to show full abstract

We study analytical solutions of the Fractional Boussinesq Equation (FBE), which is an effective model for the Fermi-Pasta-Ulam (FPU) one-dimensional lattice with long-range couplings. The couplings decay as a power-law with exponent s, with 1 < s < 3, so that the energy density is finite, but s is small enough to observe genuine long-range effects. The analytic solutions are obtained by introducing an ansatz for the dependence of the field on space and time. This allows to reduce the FBE to an ordinary differential equation, which can be explicitly solved. The solutions are initially localized and they delocalize progressively as time evolves. Depending on the value of s the solution is either a pulse (meaning a bump) or an anti-pulse (i.e., a hole) on a constant field for 1 < s < 2 and 2 < s < 3, respectively.

Keywords: pasta ulam; solutions fractional; fermi pasta; lattice long; long range

Journal Title: Journal of Statistical Mechanics: Theory and Experiment
Year Published: 2019

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.