We study analytically and numerically a couple of paradigmatic spin models, each described in terms of two sets of variables attached to two different thermal baths with characteristic timescales T… Click to show full abstract
We study analytically and numerically a couple of paradigmatic spin models, each described in terms of two sets of variables attached to two different thermal baths with characteristic timescales T and τ and inverse temperatures B and β. In the limit in which one bath becomes extremely slow ( τ→∞ ), such models amount to a paramagnet and to a one-dimensional ferromagnet in contact with a single bath. Our study is also motivated by analogies with disordered systems where widely separated timescales associated with different effective temperatures emerge. We show that these systems reach a stationary state in a finite time for any choice of B and β. We determine the non-equilibrium fluctuation-dissipation relation between the autocorrelation and the response function in such a state and, from that, we discuss if and how thermalization with the two baths occurs and the emergence of a non-trivial fluctuation-dissipation ratio.
               
Click one of the above tabs to view related content.