LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

ADRC control of a 6-DOF parallel manipulator for telescope secondary mirror

Photo by jovisjoseph from unsplash

In view of the special requirements of the secondary mirror control system on large aperture telescopes, an improved 6-DOF parallel manipulator is designed and used to replace the traditional hexapod… Click to show full abstract

In view of the special requirements of the secondary mirror control system on large aperture telescopes, an improved 6-DOF parallel manipulator is designed and used to replace the traditional hexapod used in telescope secondary mirror position dynamic compensation. A highly robust active disturbance rejection controller (ADRC) is designed, which consists of a nonlinear tracking differentiator (NTD), an extended state observer (ESO), a nonlinear state error feedback law (NLSEF), and disturbance compensation. The ESO can track the all-order state variables, as well as estimate and compensate for unmodeled dynamics and total external disturbance of the system. The results of simulation indicate that the ADRC can improve tracking precision and control performance when it is compared with the proportion integration differentiation (PID) controller. The test results show that the absolute accuracy of the three dimensional parallel motions is about ± 4 μm, and the two dimensional tilts' is about 10 μrad. The control precision meets the system design for a telescope secondary mirror.

Keywords: dof parallel; control; secondary mirror; telescope secondary; mirror

Journal Title: Journal of Instrumentation
Year Published: 2017

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.