LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Recent progress of Geant4 electromagnetic physics for calorimeter simulation

Photo by thinkmagically from unsplash

We report on recent progress in the Geant4 electromagnetic (EM) physics sub-packages. New interfaces and models introduced recently in Geant4 10.3 are already used in LHC applications and may be… Click to show full abstract

We report on recent progress in the Geant4 electromagnetic (EM) physics sub-packages. New interfaces and models introduced recently in Geant4 10.3 are already used in LHC applications and may be useful for any type of simulation. Additional developments for EM physics are available with the new public version Geant4 10.4 (December, 2017). Important developments for calorimetry applications were carried out for the modeling of single and multiple scattering of charged particles. Corrections to scattering of positrons and to sampling of displacement have recently been added to the Geant4 default Urban model. The fully theory-based Goudsmit-Saunderson (GS) model for electron/positron multiple scattering was recently reviewed and a new improved version is available in Geant4 10.4. For testing purposes for novel calorimeters we provide a configuration of electron scattering based on the GS model or on the single scattering model (SS) instead of the Urban model. In addition, the GS model with Mott corrections enabled is included in the option4 EM physics constructor. This EM configuration provides the most accurate results for scattering of electrons and positrons.

Keywords: progress geant4; physics; model; recent progress; geant4; geant4 electromagnetic

Journal Title: Journal of Instrumentation
Year Published: 2018

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.