LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Beam-tests of prototype modules for the CMS High Granularity Calorimeter at CERN

Photo from wikipedia

As part of its HL-LHC upgrade program, CMS is developing a High Granularity Calorimeter (HGCAL) to replace the existing endcap calorimeters. The HGCAL will be realised as a sampling calorimeter,… Click to show full abstract

As part of its HL-LHC upgrade program, CMS is developing a High Granularity Calorimeter (HGCAL) to replace the existing endcap calorimeters. The HGCAL will be realised as a sampling calorimeter, including 36 layers of silicon pads and 16 layers combining both silicon+scintillator detectors interspersed with metal absorber plates. Starting from 2016, prototype modules, based on 6-inch hexagonal silicon pad sensors with pad areas of 1.0 cm2, have been constructed. In 2017 and 2018, beam tests of different sampling configurations made from these modules have been conducted at CERN's SPS using beams of charged hadrons and electrons with momenta from 20 to 350 GeV/c. The setup was complemented with CALICE's AHCAL prototype, a scintillator-based sampling calorimeter, mimicking the proposed design of the HGCAL's scintillator part. Most importantly, the new Skiroc2-CMS readout ASIC has been used in the silicon modules, facilitating the study of its timing capabilities in practice. This talk summarises the test beam efforts in 2017 and 2018. Preliminary results, including gain characterisation, calibration with minimum ionising particles and energy reconstruction performance of electron induced showers are shown.

Keywords: prototype modules; high granularity; granularity calorimeter; beam tests; calorimeter; beam

Journal Title: Journal of Instrumentation
Year Published: 2019

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.