LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

A 4.32-ps precision Time-to-Digital Convertor using multisampling wave union method on a 28-nm FPGA

Photo by bagasvg from unsplash

In this paper, a fully implemented field programmable gate array (FPGA) based time-to-digital converter (TDC) using multisampling wave union method (MSWU) is proposed to get higher measurement precision with lower… Click to show full abstract

In this paper, a fully implemented field programmable gate array (FPGA) based time-to-digital converter (TDC) using multisampling wave union method (MSWU) is proposed to get higher measurement precision with lower resource utilization. Different from the previously published works based on wave union methods, an inverter-chain-based wave launcher is introduced to generate more low-jitter edges in the same operation range. Meanwhile, a new de-bubble solution combining with offline bin alignment and online bin sorting is applied to eliminate severe bubbles in FPGAs of advanced manufacturing technologies. The proposed TDCs are verified on a Virtex-7 (28 nm) of FPGA development board VC707. According to test results, the average measurement precision and mean resolution reach 4.32 ps and 0.82 ps, respectively with [-0.98;3.43] LSB DNL and [-6.06;34.1] LSB INL. A complete TDC channel only uses 831 D-type flip-flops (DFFs), 1305 look-up tables (LUTs) and 6 block random access memories (BRAMs) of 36k bits.

Keywords: wave union; fpga; using multisampling; time digital; precision

Journal Title: Journal of Instrumentation
Year Published: 2021

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.