LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Performance in beam tests of carbon-enriched irradiated Low Gain Avalanche Detectors for the ATLAS High Granularity Timing Detector

Photo from wikipedia

The High Granularity Timing Detector (HGTD) will be installed in the ATLAS experiment to mitigate pile-up effects during the High Luminosity (HL) phase of the Large Hadron Collider (LHC) at… Click to show full abstract

The High Granularity Timing Detector (HGTD) will be installed in the ATLAS experiment to mitigate pile-up effects during the High Luminosity (HL) phase of the Large Hadron Collider (LHC) at CERN. Low Gain Avalanche Detectors (LGADs) will provide high-precision measurements of the time of arrival of particles at the HGTD, improving the particle-vertex assignment. To cope with the high-radiation environment, LGADs have been optimized by adding carbon in the gain layer, thus reducing the acceptor removal rate after irradiation. Performances of several carbon-enriched LGAD sensors from different vendors, and irradiated with high fluences of 1.5 and 2.5 × 1015 neq/cm2, have been measured in beam test campaigns during the years 2021 and 2022 at CERN SPS and DESY. This paper presents the results obtained with data recorded by an oscilloscope synchronized with a beam telescope which provides particle position information within a resolution of a few μm. Collected charge, time resolution and hit efficiency measurements are presented. In addition, the efficiency uniformity is also studied as a function of the position of the incident particle inside the sensor pad.

Keywords: gain; high granularity; low gain; gain avalanche; timing detector; granularity timing

Journal Title: Journal of Instrumentation
Year Published: 2023

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.