We address the problem of quantum nonlocality with positive operator valued measures (POVM) in the context of Einstein-Podolsky-Rosen quantum steering. We show that, given a candidate for local hidden state… Click to show full abstract
We address the problem of quantum nonlocality with positive operator valued measures (POVM) in the context of Einstein-Podolsky-Rosen quantum steering. We show that, given a candidate for local hidden state (LHS) ensemble, the problem of determining the steerability of a bipartite quantum state of finite dimension with POVMs can be formulated as a nesting problem of two convex objects. One consequence of this is the strengthening of the theorem that justifies choosing the LHS ensemble based on symmetry of the bipartite state. As a more practical application, we study the classic problem of the steerability of two-qubit Werner states with POVMs. We show strong numerical evidence that these states are unsteerable with POVMs up to a mixing probability of $\frac{1}{2}$ within an accuracy of $10^{-3}$.
               
Click one of the above tabs to view related content.