LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

On the massless tree-level S-matrix in 2d sigma models

Photo from wikipedia

Motivated by the search for new integrable string models, we study the properties of massless tree-level S-matrices for 2d sigma models expanded near the trivial vacuum. We find that, in… Click to show full abstract

Motivated by the search for new integrable string models, we study the properties of massless tree-level S-matrices for 2d sigma models expanded near the trivial vacuum. We find that, in contrast to the standard massive case, there is no apparent link between massless S-matrices and integrability: in well-known integrable models the tree-level massless S-matrix fails to factorize and exhibits particle production. Such tree-level particle production is found in several classically integrable models: the principal chiral model, its classically equivalent "pseudo-dual" model, its non-abelian dual model and also the SO(N+1)/SO(N) coset model. The connection to integrability may, in principle, be restored if one expands near a non-trivial vacuum with massive excitations. We discuss IR ambiguities in 2d massless tree-level amplitudes and their resolution using either a small mass parameter or the i epsilon-regularization. In general, these ambiguities can lead to anomalies in the equivalence of the S-matrix under field redefinitions, and may be linked to the observed particle production in integrable models. We also comment on the transformation of massless S-matrices under sigma model T-duality, comparing the standard and the "doubled" formulations (with T-duality covariance built into the latter).

Keywords: tree level; level; massless tree; model; sigma models

Journal Title: Journal of Physics A: Mathematical and Theoretical
Year Published: 2019

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.