We study the eigenvalue equation for the 'Cartesian coordinates' observables $x_i$ on the fully $O(2)$-covariant fuzzy circle $\{S^1_\Lambda\}_{\Lambda\in\mathbb{N}}$ ($i=1,2$) and on the fully $O(3)$-covariant fuzzy 2-sphere $\{S^2_\Lambda\}_{\Lambda\in\mathbb{N}}$ ($i=1,2,3$) introduced in… Click to show full abstract
We study the eigenvalue equation for the 'Cartesian coordinates' observables $x_i$ on the fully $O(2)$-covariant fuzzy circle $\{S^1_\Lambda\}_{\Lambda\in\mathbb{N}}$ ($i=1,2$) and on the fully $O(3)$-covariant fuzzy 2-sphere $\{S^2_\Lambda\}_{\Lambda\in\mathbb{N}}$ ($i=1,2,3$) introduced in [G. Fiore, F. Pisacane, J. Geom. Phys. 132 (2018), 423-451]. We show that the spectrum and eigenvectors of $x_i$ fulfill a number of properties which are expected for $x_i$ to approximate well the corresponding coordinate operator of a quantum particle forced to stay on the unit sphere.
               
Click one of the above tabs to view related content.