LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Three phases of multiple SLE driven by non-colliding Dyson’s Brownian motions

Photo by scottwebb from unsplash

The present paper is concerned with properties of multiple Schramm–Loewner evolutions (SLEs) labelled by a parameter κ ∈ (0, 8]. Specifically, we consider the solution of the multiple Loewner equation… Click to show full abstract

The present paper is concerned with properties of multiple Schramm–Loewner evolutions (SLEs) labelled by a parameter κ ∈ (0, 8]. Specifically, we consider the solution of the multiple Loewner equation driven by a time change of Dyson’s Brownian motions in the non-colliding regime. Although it is often considered that several properties of the solution can be studied by means of commutation relations of SLEs and the absolute continuity, this method is available only in the case that the curves generated by commuting SLEs are separated. Beyond this restriction, it is not even obvious that the solution of the multiple Loewner equation generates multiple curves. To overcome this difficulty, we employ the coupling of Gaussian free fields and multiple SLEs. Consequently, we prove the longstanding conjecture that the solution indeed generates multiple continuous curves. Furthermore, these multiple curves are (i) simple disjoint curves when κ ∈ (0, 4], (ii) intersecting curves when κ ∈ (4, 8), and (iii) space-filling curves when κ = 8.

Keywords: non colliding; dyson brownian; three phases; phases multiple; brownian motions

Journal Title: Journal of Physics A: Mathematical and Theoretical
Year Published: 2021

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.