Malignant mesothelioma (MM) is an incurable cancer. MM is often misdiagnosed, with a poor 5-year survival and limited treatment options. The discovery of endogenous volatile organic compounds (VOCs) is required… Click to show full abstract
Malignant mesothelioma (MM) is an incurable cancer. MM is often misdiagnosed, with a poor 5-year survival and limited treatment options. The discovery of endogenous volatile organic compounds (VOCs) is required in order to accelerate the development of a breath test as an alternative to conventional MM diagnosis. For the first time, this study used solid-phase microextraction (SPME) and gas chromatography-mass spectrometry (GC-MS) to identify VOCs released directly from the biphasic MM cell line MSTO-211H and the epithelioid MM cell line NCI-H28 as well as the non-malignant mesothelial cell line MET-5A. Multivariate statistical analysis showed separation between MSTO-211H, NCI-H28 and MET-5A results. 2-ethyl-1-hexanol was significantly increased in both MSTO-211H and NCI-H28 cells compared to MET-5A controls. In addition, ethyl propionate and cyclohexanol were significantly increased in MSTO-211H cells and dodecane was significantly increased in NCI-H28 cells. This is the first study reporting headspace analysis of these MM cell lines and the first to consider the effects of mesothelioma sub-type on VOC profile. Current results further highlight the potential for a diagnostic mesothelioma breath test as well as providing proof of concept for the differentiation between biphasic and epithelioid mesothelioma based on VOC profiles.
               
Click one of the above tabs to view related content.