The stiffness and topography of a cell's extracellular matrix are physical cues that play a key role in regulating processes that determine cellular fate and function. While substrate stiffness can… Click to show full abstract
The stiffness and topography of a cell's extracellular matrix are physical cues that play a key role in regulating processes that determine cellular fate and function. While substrate stiffness can dictate cell differentiation lineage, migration, and self-organization, topographical features can change the cell's differentiation profile or migration ability. Although both physical cues are present and intrinsic to the native tissuesin vivo,in vitrostudies have been hampered by the lack of technological set-ups that would be compatible with cell culture and characterization.In vitrostudies therefore either focused on screening stiffness effects in cells cultured on flat substrates or on determining topography effects in cells cultured onto hard materials. Here, we present a reliable, microfabrication method to obtain well defined topographical structures of micrometer size (5-10 µm) on soft polyacrylamide hydrogels with tunable mechanical stiffness (3-145 kPa) that closely mimic thein vivosituation. Topographically microstructured polyacrylamide hydrogels are polymerized by capillary force lithography using flexible materials as molds. The topographical microstructures are resistant to swelling, can be conformally functionalized by extracellular matrix proteins and sustain the growth of cell lines (fibroblasts and myoblasts) and primary cells (mouse intestinal epithelial cells). Our method can independently control stiffness and topography, which allows to individually assess the contribution of each physical cue to cell response or to explore potential synergistic effects. We anticipate that our fabrication method will be of great utility in tissue engineering and biophysics, especially for applications where the use of complexin vivo-likeenvironments is of paramount importance.
               
Click one of the above tabs to view related content.