LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Pulse-shaped broadband multiphoton excitation for single-molecule fluorescence detection in the far field

Photo from wikipedia

Multiphoton excitation of fluorescence has many potential advantages over resonant (one-photon) excitation, but the method has not found widespread use for ultrasensitive applications. We recently described an approach to the… Click to show full abstract

Multiphoton excitation of fluorescence has many potential advantages over resonant (one-photon) excitation, but the method has not found widespread use for ultrasensitive applications. We recently described an approach to the multiphoton excitation of single molecules that uses a pulse shaper to compress and tailor pulses from an ultrafast broadband laser in order to optimise the brightness and signal-to-background ratio following non-linear excitation. Here we provide a detailed description of the setup and illustrate its use and potential by optimising two-photon fluorescence of a common fluorophore, rhodamine 110, at the single-molecule level. We also show that a DNA oligonucleotide labelled with a fluorescent nucleobase analogue, tC, can be detected using two-photon FCS, whereas one-photon excitation causes rapid photobleaching. The ability to improve the signal-to-background ratio and to reduce the incident power required to attain a given brightness can be applied to the multiphoton excitation of any fluorescent species, from small molecules with low multiphoton cross sections to the brightest nanoparticles.

Keywords: single molecule; excitation; excitation single; multiphoton excitation; fluorescence

Journal Title: Methods and Applications in Fluorescence
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.