LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Ultrasensitive ambient-stable SnSe2-based broadband photodetectors for room-temperature IR/THz energy conversion and imaging

Photo from wikipedia

The advent of tin diselenide (SnSe2) enables novel pathways for optoelectronics, due to its reduced cost, ultralow thermal conductivity and high potential for thermoelectricity. To date, SnSe2-based optoelectronic devices have… Click to show full abstract

The advent of tin diselenide (SnSe2) enables novel pathways for optoelectronics, due to its reduced cost, ultralow thermal conductivity and high potential for thermoelectricity. To date, SnSe2-based optoelectronic devices have been focused on the visible and infrared range of the electromagnetic spectrum, with efficiency sharply decreasing at longer wavelength. Here, we present SnSe2 photodetectors with exfoliated SnSe2 nanosheets extended in the range of terahertz frequency exhibiting high responsivity (170 V W-1), fast speed (2.2 μs), as well as room-temperature operation, based on efficient production of hotelectrons under deep-subwavelength electromagnetic focus, which outperform thermal-based photodetectors. Our SnSe2-based detectors show high-contrast imaging from terahertz up to visible. The outstanding ambient stability of our broadband photodetectors in a timescale of months is due to the chemical inertness of stoichiometric SnSe2 crystals, validated by surface-science experiments. Our results demonstrate the suitability of SnSe2 for multispectral sensing and real-time imaging.

Keywords: snse2 based; snse2; room temperature; broadband photodetectors

Journal Title: 2D Materials
Year Published: 2020

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.