LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Prediction and analysis of thermal aging behavior of magnetorheological grease

Photo by philinit from unsplash

Magnetorheological grease (MRG) is a new type of field-response intelligent material with controllable performance and excellent settlement stability, which is feasible to replace traditional materials. The heating phenomenon of magnetorheological… Click to show full abstract

Magnetorheological grease (MRG) is a new type of field-response intelligent material with controllable performance and excellent settlement stability, which is feasible to replace traditional materials. The heating phenomenon of magnetorheological (MR) devices is more common during operation and the influence law of continuous thermal effect (thermal aging) on the performance of MRG needs to be studied. In this article, the effect of thermal aging behavior on the rheological properties of MRG has been investigated. Accelerated heat treat the sample and test the shear stress under the condition of thermo-magnetic coupling. To reduce the time and cost during the study of MR materials, an improved and reliable artificial neural network (ANN) prediction model was developed to characterize and predict the relationship among temperature, aging time, magnetic field strength and the thermo-rheological properties of MRG. The test results of MRG before and after thermal aging show that thermal aging causes irreversible structural damage and the performance decreases with increasing aging time. The comparison of the ANN prediction results with the test results, the correlation coefficient R reached and exceeded 0.95. The results showed that the model had excellent prediction accuracy and could provide theoretical reference for the thermal aging behavior of MRG.

Keywords: thermal aging; aging behavior; prediction; magnetorheological grease; prediction analysis

Journal Title: Materials Research Express
Year Published: 2021

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.