LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Ultra-dense (Bi, V, B)-oxide-added zircon ceramics fabricated by liquid-phase assisted spark plasma sintering (SPS)

Photo by ldxcreative from unsplash

Ultra-high-density zircon (ZrSiO4) ceramics were prepared using the spark plasma sintering (SPS) technique of zircon nanopowder with the addition of three different sintering agents, i.e., Bi2O3, V2O5 and B2O3. The… Click to show full abstract

Ultra-high-density zircon (ZrSiO4) ceramics were prepared using the spark plasma sintering (SPS) technique of zircon nanopowder with the addition of three different sintering agents, i.e., Bi2O3, V2O5 and B2O3. The effect of each agent and the SPS parameters (temperature and pressure) on phase composition, microstructure, thermal and mechanical properties of the ceramics were evaluated. The identified crystalline phases of the sintered ceramics were zircon and monoclinic zirconia. The addition of a sintering agent affects the structure of zircon ceramics, i.e. the lattice parameter and the crystallite size. The sintered ceramics reached relative densities up to 99.9% of the theoretical one when V2O5 or B2O3 was added. SEM observations confirmed the densification of the zircon ceramics. We found the ceramics exhibited thermal conductivity ranging from 0.39 to 0.61 Wm−1K−1 at 373 K while the coefficient of thermal expansion was 2.3–4.0 × 10−6/°C and the Vickers hardness was obtained to be 9.52–12.66 GPa. The Young’s (E), bulk (B), and shear (G) moduli, Poisson’s ratio ν, Pugh’s ratio B/G, and the ratio of HV3/E*2 of the ceramics are in a range of 240 − 288 GPa, 207 − 267 GPa, 91 − 109 Pa, 1.95 − 2.45, and 0.011 − 0.019 respectively. We found that high-density, quasi-ductile zircon ceramics can be synthesized at a low sintering temperature and short holding time.

Keywords: sintering sps; spark plasma; zircon ceramics; plasma sintering; zircon

Journal Title: Materials Research Express
Year Published: 2023

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.