LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Comparing Spore Resistance of Bacillus Strains Isolated from Hydrothermal Vents and Spacecraft Assembly Facilities to Environmental Stressors and Decontamination Treatments.

Photo from wikipedia

Submarine hydrothermal vents are inhabited by a variety of microorganisms capable of tolerating environmental extremes, making them ideal candidates to further expand our knowledge of the limitations for terrestrial life,… Click to show full abstract

Submarine hydrothermal vents are inhabited by a variety of microorganisms capable of tolerating environmental extremes, making them ideal candidates to further expand our knowledge of the limitations for terrestrial life, including their ability to survive the exposure of spaceflight-relevant conditions. The spore resistance of two Bacillus spp. strains, APA and SBP3, isolated from two shallow vents off Panarea Island (Aeolian Islands, Italy), to artificial and environmental stressors (i.e., UVC radiation, X-rays, heat, space vacuum, hydrogen peroxide [H2O2], and low-pressure plasma), was compared with that of two close phylogenetic relatives (Bacillus horneckiae and Bacillus oceanisediminis). Additional comparisons were made with Bacillus sp. isolated from spacecraft assembly facilities (B. horneckiae, Bacillus pumilus SAFR-032, and Bacillus nealsonii) and the biodosimetry strain and space microbiology model organism Bacillus subtilis. Overall, a high degree of spore resistance to stressors was observed for the strains isolated from spacecraft assembly facilities, with an exceptional level of resistance seen by B. pumilus SAFR-032. The environmental isolate SBP3 showed a more robust spore resistance to UVC, X-rays, H2O2, dry heat, and space vacuum than the closely related B. horneckiae. Both strains (SBP3 and APA) were more thermotolerant than their relatives, B. horneckiae and B. oceanisediminis, respectively. SBP3 may have a novel use as a bacterial model organism for future interrogations into the potential of forward contamination in extraterrestrial environments (e.g., icy moons of Jupiter or Saturn), spacecraft sterilization and, broadly, microbial responses to spaceflight-relevant environmental stressors.

Keywords: environmental stressors; spore resistance; resistance; spacecraft assembly; bacillus

Journal Title: Astrobiology
Year Published: 2018

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.