LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

The Raman Active Vibrational Modes of Anthraquinones.

Photo from wikipedia

Anthraquinones are a family of natural products with useful bioactivity and optical properties. An anthraquinone called parietin is produced by extremophiles to protect against solar ultraviolet B radiation, so it… Click to show full abstract

Anthraquinones are a family of natural products with useful bioactivity and optical properties. An anthraquinone called parietin is produced by extremophiles to protect against solar ultraviolet B radiation, so it is a potential biosignature in astrobiology. Raman spectroscopy, which is now used in space environments, can detect molecules such as parietin based on molecular vibrations. In this study, we show that time-dependent density functional theory (TDDFT) can accurately calculate the Raman spectra of three dihydroxyanthraquinones: parietin, emodin, and chrysophanol. By comparing calculated spectra to measured Raman spectra from purified powders, 10 vibrational modes are identified. The detailed molecular motions of these fused ring vibrations are described, and vibrations modes that are common to all three molecules are highlighted. In addition to powder spectra, Raman measurements from the thallus of Xanthoria parietina, a lichen that produces parietin, are reported, with excellent agreement to both the parietin powder and calculated Raman spectra. These results show that TDDFT calculations could make significant contributions to spectral analysis in the search for biotic organic materials beyond Earth.

Keywords: astrobiology; active vibrational; raman active; raman spectra; raman; vibrational modes

Journal Title: Astrobiology
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.