LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Deep Learning for Time Series Forecasting: A Survey

Photo from wikipedia

Time series forecasting has become a very intensive field of research, which is even increasing in recent years. Deep neural networks have proved to be powerful and are achieving high… Click to show full abstract

Time series forecasting has become a very intensive field of research, which is even increasing in recent years. Deep neural networks have proved to be powerful and are achieving high accuracy in many application fields. For these reasons, they are one of the most widely used methods of machine learning to solve problems dealing with big data nowadays. In this work, the time series forecasting problem is initially formulated along with its mathematical fundamentals. Then, the most common deep learning architectures that are currently being successfully applied to predict time series are described, highlighting their advantages and limitations. Particular attention is given to feed forward networks, recurrent neural networks (including Elman, long-short term memory, gated recurrent units, and bidirectional networks), and convolutional neural networks. Practical aspects, such as the setting of values for hyper-parameters and the choice of the most suitable frameworks, for the successful application of deep learning to time series are also provided and discussed. Several fruitful research fields in which the architectures analyzed have obtained a good performance are reviewed. As a result, research gaps have been identified in the literature for several domains of application, thus expecting to inspire new and better forms of knowledge.

Keywords: time series; series forecasting; time; deep learning; learning time

Journal Title: Big data
Year Published: 2021

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.